
总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它可以促使我们思考,不如立即行动起来写一份总结吧。如何把总结做到重点突出呢?下面是小编精心整理的初一数学有理数总结,希望对大家有所帮助。
初一数学有理数总结11.1正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数。以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义
1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:
⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
……此处隐藏3562个字……般步骤因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。




